Skip to main content

Azure_Query

Node

Node Description

Query Azure SQL database, process data in Python, and upload results to Ganymede data lake

Node Attributes

  • src_azure_host_name
    • Host name for Azure database to pull from
  • src_azure_database
    • Azure database to pull from
  • output_table_analysis

Notes

Prior to usage, the following secrets must be configured in your Ganymede environment:

  • azure_client_id: App client ID
  • azure_object_id: App object ID
  • azure_tenant_id: App tenant ID
  • azure_subscription_id: Azure subscription ID
  • azure_aad_authority: App Azure Active Directory (AAD) Authority
  • azure_sql_odbc_driver: Azure SQL ODBC Driver to reference

Secrets can be configured by clicking on your username in the upper-right hand of the Ganymede application, then selecting Environment Settings and navigating to the Secrets tab. If you need assistance, please don't hesitate to reach out to Ganymede.

On the Ganymede end - make sure that the relevant MSSQL ODBC Driver is made available for the workflow execution environment. artifact_registry should be populated in secrets with the web address hosting the container

In the execute function, returning NodeReturn(tables_to_upload={'analysis': df}) would render the DataFrame df in the Flow Editor if Table Head visualization is enabled.

Example

An example configuration is shown below:

  • src_azure_host_name: sql-abc123.database.windows.net
  • src_azure_database: az_db
  • output_table_analysis: output_tbl

User-Defined Python

Process tabular data from user-defined SQL query, writing results back to data lake

Parameters

  • df_sql_result : pd.DataFrame | list[pd.DataFrame]
    • Table(s) or list of tables retrieved from user-defined SQL query
  • ganymede_context : GanymedeContext
    • Ganymede context variable, which stores flow run metadata

Returns

NodeReturn Object containing data to store in data lake and/or file storage